In this study, multidimensional feature extraction is performed on the U-language recordings of the test takers, and these features are evaluated separately, with five categories of features: pronunciation, fluency, vocabulary, grammar, and semantics. A deep neural network model is constructed to model the feature values to obtain the final score. Based on the previous research, this study uses a deep neural network training model instead of linear regression to improve the correlation between model score and expert score..............
Loading....